REACTIONS DE PRECIPITATION

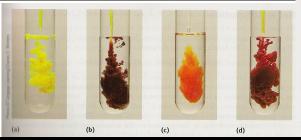


FIGURE 3.12 Precipitation reactions. Many inonic compounds are insoluble in water. Guidelines for predicting the solubilities of ionic compounds are given in Figure 3.10.

(a) Pb(NO₂) and K₂/CrO₄ produce yellow, insoluble PbCrO₄ and soluble KNO₃. (b) Pb(NO₂)₂ and (NH₄)₂S produce black, insoluble PbS and soluble NH₄NO₅. (c) FeCl₃ and NaOH produce orange, insoluble Fe(OH)₃ and soluble NaCl. (d) AgNO₃ and K₂CrO₄ and soluble KNO₅. (See Example 3.3.)

OBJECTIFS

- ✓ Vérifier et caractériser la présence de quelques ions dans des solutions
- √ Observer la formation d'un précipité
- ✓ Reconnaître les ions ayant réagi
- √ Ecrire les réactions de précipitation
- ✓ Observer l'influence de la complexation et de la température sur la précipitation

MATERIEL

Par poste:

- √ 4 tubes à essai sur un support, bec bunsen, pince en bois, bécher
- ✓ <u>Solutions à étudier</u> : Chlorure de zinc, chlorure de fer (III), sulfate de cuivre, sulfate de zinc, hydroxyde de sodium, hydroxyde de calcium, chlorure de calcium, sulfate de fer (II), chlorure de sodium
- ✓ Réactifs : Nitrate d'argent, chlorure de baryum, oxalate d'ammonium, hydroxyde de sodium (0,2) mol.L⁻¹
- ✓ Influence de la température : Nitrate de plomb, iodure de potassium
- ✓ Influence de la complexation : Ammoniaque concentré, sulfate de cuivre à 0,1 mol.L⁻¹

Paillasse professeur:

√ Cristallisoir avec eau et glace

1. IDENTIFICATION DES ANIONS PAR PRECIPITATION

MODE OPERATOIRE

Vous disposez de 4 tubes à essai.

- ⇒ Verser dans chaque tube à essai environ 2 mL environ de la solution à étudier.
- ⇒ Ajouter goutte à goutte la solution de réactif en agitant doucement le tube.
- ⇒ Noter « + » dans la colonne test s'il y a formation d'un précipité et indiquer sa couleur.
- ⇒ Vider les tubes à essai dans le récipient « récupération », rincer les tubes à l'eau puis à l'eau distillée.

EXPERIENCE 1 : le réactif est une solution de nitrate d'argent $AgNO_{3(aq)}$

Solution à tester	Chlorure de zinc	Chlorure de fer	Sulfate de zinc	Sulfate de fer
	$ZnCl_{2(aq)}$	FeCl _{3(aq)}	$ZnSO_{4(aq)}$	$FeSO_{4(aq)}$
Test				
Couleur				

	90
2)	O.

Quel est l'ion commun aux solutions qui a réagi?

Quel est l'ion contenu dans le réactif qui permet de caractériser cet ion commun ?

4) Ecrire les réactions de précipitation observées.

- \Rightarrow ZnCl_{2(aq)}:
- $\Rightarrow FeCl_{3(aq)}$:
- \Rightarrow ZnSO_{4(aq)}:
- \Rightarrow FeSO_{4(aq)}:

EXPERIENCE 2 : le réactif est une solution de chlorure de baryum $BaCl_{2(aq)}$

Solution à tester	Chlorure de zinc	Chlorure de fer	Sulfate de zinc	Sulfate de fer
	$ZnCl_{2(aq)}$	FeCI _{3(aq)}	$ZnSO_{4(aq)}$	$FeSO_{4(aq)}$
Test				
Couleur				

- Quel est l'ion commun aux solutions qui a réagi?
- Quel est l'ion contenu dans le réactif qui permet de caractériser cet ion commun ?
- 3) Ecrire les réactions de précipitation observées.
- \Rightarrow ZnCl_{2(aq)}:

\Rightarrow FeCI _{3(aq)} :				
\Rightarrow ZnSO _{4(aq)} :				
\Rightarrow FeSO _{4(aq)} :				
EXPERIENCE 3 :	lo résetif set l'e	avalata d'ammar	nium(NH) CO	
EXPERIENCE 3:	e le reactif est i d	oxalate d ammon	$\mathbf{110m}(\mathbf{NH}_4)_2 \mathbf{C}_2 \mathbf{O}_{4(aq)}$	
1)				
Solution à tester	Chlorure de calcium <i>CaCl</i> _{2(aq)}	Chlorure de sodium <i>NaCl_(aq)</i>	Hydroxyde de calcium $Ca(OH)_{2(aq)}$	Hydroxyde de sodium <i>NaOH</i> _(aq)
Test				
Couleur				
quel est l'ion commun aux solutions qui a réagi ?				
Quel est l'ion contenu dans le réactif qui permet de caractériser cet ion commun ?				
4) Ecrire les réactions de précipitation observées. $\Rightarrow CaCl_{2(aq)}:$				
\Rightarrow $NaCl_{(aq)}$:				
$\Rightarrow Ca(OH)_{2(aq)}$:				
$\Rightarrow NaOH_{(aq)}$:				
QUE POUVEZ VOUS CONCLURE DE CES EXPERIENCES ?				

2. IDENTIFICATION DES CATIONS PAR PRECIPITATION

MODE OPERATOIRE

- ⇒ Verser dans chaque tube à essai 2 mL environ de la solution contenant l'ion à identifier.
- ⇒ Ajouter goutte à goutte la solution de réactif de reconnaissance en agitant doucement le tube.
- ⇒ Indiquer la couleur du précipité obtenu.
- ⇒ Vider les tubes à essai dans le récipient « récupération », rincer les tubes à l'eau puis à l'eau distillée.

EXPERIENCE

lon à identifier	Ion cuivre <i>Cu</i> ²⁺	lon zinc <i>Zn</i> ²⁺	Ion fer <i>Fe</i> ²⁺	lon fer <i>Fe</i> ³⁺
Réactif de	Hydroxyde de	Hydroxyde de	Hydroxyde de	Hydroxyde de
reconnaissance	sodium <i>NaOH_(aq)</i>	sodium <i>NaOH</i> _(aq)	sodium <i>NaOH_(aq)</i>	sodium <i>NaOH_(aq)</i>
observation				

2) Pour chaq	ue expérience, écri	re la réaction d	e précipitation.
---------------------	---------------------	------------------	------------------

- \Rightarrow lon cuivre Cu^{2+} :
- \Rightarrow lon zinc Zn^{2+} :
- \Rightarrow lon fer Fe^{2+} :
- \Rightarrow Ion fer Fe^{3+} :

QUE POUVEZ VOUS CONCLURE DE CES EXPERIENCES ?

3. INFLUENCE DE DIFFERENTS FACTEURS SUR LA PRECIPITATION

EFFET DE LA COMPLEXATION

1) Lans un bécher, verser un peu de la solution de sulfate de cuivre $CuSO_{4(aq)}$ à 0,1 mol.L⁻¹ puis ajouter de la soude.

Dans le bécher précédent, ajouter de l'ammoniaque $NH_{3(aq)}$ concentrée.

Qu'observez-vous ? Ecrire les réactions correspondantes en vous aidant du cours. Conclusion.

INFLUENCE DE LA TEMPERATURE

1) Dans un tube a essai à température ambiante contenant du nitrate de plomb $Pb(NO_3)_{2(aq)}$, ajouter quelques gouttes de iodure de sodium $NaI_{(aq)}$ (ou iodiure de potassium $KI_{(aq)}$).

Qu'observez-vous ? Ecrire la réaction de précipitation correspondante.

A l'aide d'un bec bunsen et d'une pince en bois, chauffer le tube à essai jusqu'à ébullition.

Qu'observez-vous?

- ⇒ On verse un partie du tube a essai chauffer dans un autre tube à essai.
- ⇒ On refroidi brutalement un des tubes à essai en le plongeant brutalement dans un cristallisoir contenant de l'eau et de la glace.
- ⇒ On laisse refroidir l'autre tube à essai lentement (à l'air ambiante).

Qu'observez-vous ? Différence entre les deux cas ? explications possibles ?