
OXYDOREDUCTION PARTIE I

EXEMPLE DE REACTIONS

OBJECTIFS

- ✓ Effectuer quelques réactions d'oxydoréduction.
- ✓ Déterminer les réactifs et les produits.
- ✓ Ecrire les demi équations d'oxydoréduction ainsi que l'équation de la réaction.

MATERIEL

Par groupe

- ✓ Tubes à essai sur un support
- ✓ Béchers de 100 mL
- ✓ Eprouvette 25 mL
- ✓ Lunettes de protection
- ✓ Erlenmeyer

Dans des flacons compte-gouttes

- ✓ Acide chlorhydrique de concentration 1 mol.L⁻¹
- ✓ Solution d'hydroxyde de sodium de concentration 1 mol.L⁻¹
- ✓ Solution de sulfate de cuivre de concentration 0,1 mol.L⁻¹
- ✓ Une solution acidifiée de sulfate de fer II (ou de sel de Mohr) de concentration 0,1 mol.L⁻¹: 500mL

✓ Une boite d'allumettes

✓ Un morceau de paille de fer

√ Une spatule

✓ Une solution acidifiée de permanganate de potassium de concentration 5×10⁻³ mol.L⁻¹: 500 mL

1. REACTION ENTRE LE FER ET l'ACIDE CHLORHYDRIQUE

MANIPULATION

- ⇒ Dans un tube à essai, introduire une spatule de limaille de fer.
- ⇒ Se munir de lunette et ajouter avec précaution 2mL de la solution d'acide chlorhydrique.
- ⇒ Observer. Boucher un court instant l'ouverture du tube avec le doigt pour emprisonner le gaz qui se dégage.
- ⇒ Toujours muni de lunettes, approcher avec précaution l'ouverture du tube d'une flamme.
- ⇒ Lorsque la réaction semble terminée, ajouter avec précaution quelques gouttes de la solution d'hydroxyde de sodium. Observer.

ANALYSE ET EXPLOITATION

Déterminer les réactifs effectivement engagés dans la réaction.

Quelle est la nature du gaz dégagé par la réaction ?
Quel est le produit de la réaction mis en évidence par la solution d'hydroxyde de sodium ?
4) Ecrire les demi-équations d'oxydoréduction, puis l'équation de la réaction d'oxydoréduction réalisée.

2. ACTION DU FER SUR LES IONS CUIVRE II

MANIPULATION

- ⇒ Dans un tube à essai, placer un morceau de paille de fer.
- ⇒ Ajouter quelques millilitres de la solution de sulfate de cuivre II.
- ⇒ Au bout d'une minute, prélever environ 2mL de la solution, les placer dans un tube et y ajouter avec précaution quelques gouttes de la solution d'hydroxyde de sodium.
- ⇒ Observer l'aspect du morceau de paille de fer au bout d'environ 5 minutes.

ANALYSE ET EXPLOITATION

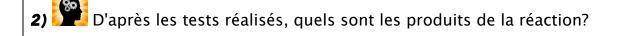
1) Déterminer les réactifs effectivement engagés dans la réaction.

2) D'après les tests réalisés, quels sont les produits de la réaction?

3) Ecrire les demi-équations d'oxydoréduction, puis l'équation de la réaction d'oxydoréduction réalisée.

3. REACTION ENTRE LES IONS FER II ET L'ION PERMANGANATE

MANIPULATION


Attention, les solutions à utiliser sont acidifiées !

- ⇒ Verser environ 20 mL de la solution acidifiée de sulfate de fer II (ou de sel de Mohr) dans un bécher n°1.
- ⇒ Dans un bécher n°2, verser environ 20mL de la solution acidifiée de permanganate de potassium. Verser doucement et avec précaution le contenu du bécher n°2 dans le bécher n°1 et observer. On obtient une solution que l'on appellera n°3.
- ⇒ Préparer deux tubes à essai: l'un contenant quelques millilitres de la solution de sulfate de fer (II) et l'autre contenant quelques millilitres de la solution n°3.
- ⇒ Ajouter avec précaution dans chacun de ces tubes quelques gouttes de solution d'hydroxyde de sodium. Observer.

ANALYSE ET EXPLOITATION

1) Déterminer les réactifs effectivement engagés dans la réaction.

3) Ecrire les demi-équations d'oxydoréduction, puis l'équation de la réaction d'oxydoréduction réalisée.

4. PANACHE DE BROUILLARD

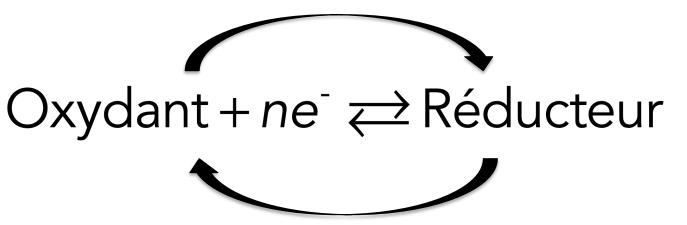
MANIPULATION

⇒ Verser une petite quantité d'eau oxygénée à 110 volumes dans un erlenmeyer et ajouter autant d'eau. Puis, avec précaution (lunettes+gants), une spatule de permanganate de potassium dans l'erlenmeyer.

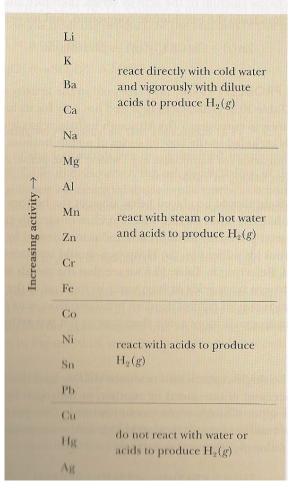
ANALYSE ET EXPLOITATION

1) Les couples mises en jeu sont $O_{2(g)}/H_2O_{2(\ell)}$ et $MnO_{4(g)}^-/Mn_{(aq)}^{2+}$. Ecrire les demi-équations, puis l'équation bilan de la réaction.

2) En touchant l'erlenmeyer, vous avez sûrement constaté un transfert thermique important. Que se passe-t-il pour l'eau liquide formé ?


Réécrire l'équation bilan. Quels sont les gaz produits ? Pourquoi observe-t-on des fines gouttelettes d'eau sur les parois ?

ANNEXE:


- Un **réducteur** est une espèce atomique, ionique ou moléculaire susceptible de **céder** un ou plusieurs électrons.
- Un *oxydant* est une espèce atomique, ionique ou moléculaire susceptible de gagner un ou plusieurs électrons.

Réduction = gain d'électrons

Oxydation = perte d'électrons

TABLE 10.8 Activity series for some common metals

