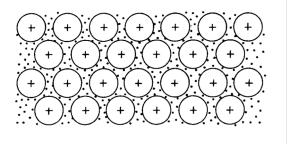

LES DIFFERENTS EDIFICES CRISTALLINS PARFAITS


« What one learns in chemistry is that Nature wrote all the rules of structuring; man does not invent chemical structuring rules; he only discovers the rules. All the chemical can do is find out what Nature permits, and any substances that are thus developed or discovered are inherently natural. »

R. Buckminster Fuller (1895-1983)

- EDIFICES METALLIQUES

1. GENERALITES

Représentation schématique de la structure électronique d'un métal :

- + : Ions positifs (cations).
- : Les points représentent les électrons libres (négatifs).

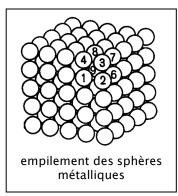
Les cristaux métalliques sont constitués de cations métalliques noyés dans un « gaz d'électrons » (électrons libres). Les électrons libres sont les électrons périphériques (externes) perdus par les atomes du métal.

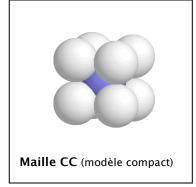
Ces électrons libres assurent la cohésion du cristal. Le « gaz d'électrons » unit ainsi les cations métalliques dans une sorte de liaison communautaire appelée LIAISON MÉTALLIQUE.

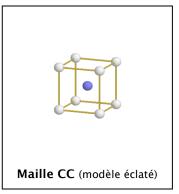
MODELE DE LIAISON METALLIQUE

La liaison métallique consiste en la mise en commun des électrons externes entre TOUS les atomes de l'édifice métallique (électrons délocalisés sur l'ensemble des atomes du métal).

2 MAILLES DES METAUX PURS

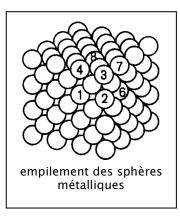

2.1. Modèle de la sphère métallique

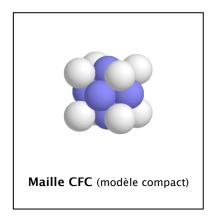

On admet que les cristaux métalliques sont constitués par un **empilement compact** de **sphères indéformables identiques** (ces sphères ne sont ni des ions, ni des atomes : ce sont des **modèles**). Le rayon de ces sphères r est appelé **rayon métallique**.

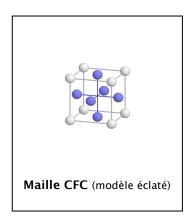

Les MAILLES des métaux sont le plus souvent du type CUBIQUE ou HEXAGONAL COMPACT.

2.2. Réseau cubique centré (CC)

C'est le cas du **fer** α (stable en dessous de 910°C), du sodium, du chrome, etc.

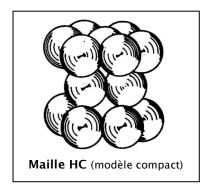


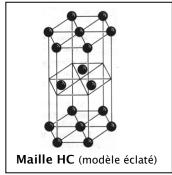




2.3. Réseau cubique à faces centrées (CFC) (Seul cas au programme)

C'est le cas du **fer** β (stable entre 910 et 1 400°C), de l'aluminium, du cuivre, etc.

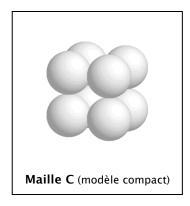


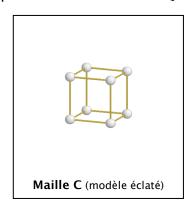

Les variétés α et β sont dites variétés allotropiques. Un corps pur peut donc exister à l'état solide sous plusieurs variétés cristallines. On retrouve ce phénomène dans tous les types de cristaux :

- Cristaux métalliques : fer α , fer γ , fer δ .
- Cristaux ioniques : diverses variétés de ZnS (blende ou sulfure de zinc).
- Cristaux covalents : carbone graphique ou diamant.
- Cristaux moléculaires : de nombreuses variétés de glace selon les conditions de température et de pression.

2.4. Réseau hexagonal compact (HC)

C'est le cas du magnésium, du zinc, du cadmium, etc.





Remarque:

Les structures CC, CFC et HC représentent environ 90% des métaux.

Mais on trouve aussi quelques autres structures : p. ex la structure CUBIQUE SIMPLE (C) :

C'est le cas du manganèse (Mn) entre 707°C et 1 088°C.

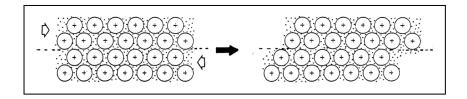
3. PROPRIETES DES EDIFICES METALLIQUES EN RAPPORT AVEC LEUR STRUCTURE

Ce paragraphe n'est pas au programme de PTSI en sciences physiques. Cependant, vous serez conduit à étudier et à approfondir le contenu de ce dernier dans votre cursus (en cours de SI, en école d'ingénieur...).

3.1. Propriétés mécaniques et thermiques

Les métaux présentent des duretés et des rigidités très diverses. Les dilatations thermiques et les points de fusion sont également très divers. Ceci est dû aux différences que peuvent présenter, selon les cas, les forces de liaison métallique.

En effet, les liaisons métalliques **réelles** sont plus ou moins éloignées du **modèle** de la liaison métallique (ce modèle suppose que tous les électrons assurant la cohésion du cristal sont délocalisés, c'est-à-dire qu'ils n'appartiennent à aucun cation particulier).


- A la liaison métallique **pure** (c'est-à-dire proche du modèle) correspondent des **forces de COHÉSION faibles** à **peu élevées**.
- Lorsque la liaison métallique présente un caractère covalent partiel (c'est-à-dire qu'un certain nombre d'électrons assurant la cohésion du cristal sont engagés dans des liaisons de type covalent entre des cations particuliers : électrons localisés), les **forces de COHÉSION** sont **intenses**.

	POTASSIUM <i>K</i> liaison métallique pure forces de cohésion faibles	TUNGSTÈNE W liaison métallique avec caractère covalent partiel forces de cohésion intenses
Point de fusion (°C)	64	3 410
Dilatation thermique	K est environ 18 fois plus dilatable que W	
Dureté, Rigidité	faibles (métal mou)	élevées (métal dur et rigide)

3.2. Plasticité des cristaux métalliques

Soumis à des efforts ou sollicitations divers (**forces**, **chocs**) **UN METAL PEUT SE DEFORMER SANS SE BRISER**.

Un métal est déformable plastiquement

La **cohésion** entre les cations est assurée par le **« gaz d'électrons »**, **fluide**. Les plans « atomiques » peuvent glisser les uns sur les autres : **le déplacement ne modifie pas les forces de cohésion** entre les couches : **LE CRISTAL RESTE STABLE**.

3.3. Conductibilité électrique et thermique

Les électrons libres assurent la **conductibilité électrique** des métaux. Il existe un rapport direct entre la **transmission de la chaleur** et la **transmission de l'électricité** par l'intermédiaire des électrons libres.

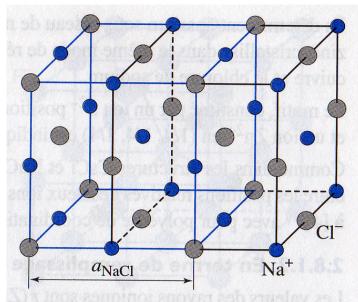
Un métal bon conducteur de l'électricité est également un bon conducteur de la chaleur

3.4. Propriétés optiques

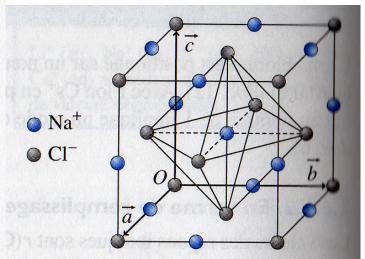
Ce sont encore les **électrons libres** qui sont responsables du **pouvoir réflecteur** (éclat métallique) et de **l'opacité** des métaux.

3.5. Propriétés principales des édifices métalliques (métaux purs)

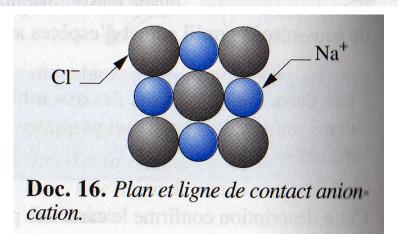
	Propriétés liées à	Propriétés liées au	Propriétés liées à la
	l' intensité des forces de	caractère communautaire	présence
	cohésion	de la liaison métallique	d' électrons libres
	(variable d'un métal à l'autre)	(cohésion assurée par le gaz	
		d'électrons)	
PROPRIÉTÉS	Duretés et rigidités très diverses	Plasticité	
MÉCANIQUES			
PROPRIÉTÉS			Bons conducteurs
ÉLECTRIQUES			électriques
PROPRIÉTÉS	Dilatations thermiques et points		Bon conducteurs
THERMIQUES	de fusion très divers		thermiques
PROPRIÉTÉS			Pouvoir réflecteur,
OPTIQUES			opacité


Remarque: Les objets métalliques que l'on rencontre quotidiennement et produits par l'industrie ne se trouvent jamais à l'état pur mais sous forme d'alliages métalliques. Ce sont des produits obtenus en incorporant un ou plusieurs éléments (métalliques ou non) à un métal. Les alliages métalliques sont en général plus durs et plus résistants à la traction mais moins plastiques que les métaux purs. Ils sont cependant moins conducteurs de l'électricité et de la chaleur.

II - EDIFICES IONIQUES


1. DEFINITIONS

- Ce sont des **assemblages compacts et ordonnés d'ions de signes contraires** dans des proportions correspondant à la **neutralité électrique** de l'ensemble.
- La liaison ionique résulte de l'association d'ions positifs et d'ions négatifs.
- On adopte à nouveau le modèle des sphères dures pour les ions. Chaque ion s'entoure du nombre maximal d'ions de signe opposé (contact mixte favorisé par l'interaction coulombienne).
- En général le rayon ionique r_{\perp} est supérieur au rayon cationique r_{\perp} . Le réseau des anions est alors dit **réseau hôte** et les cations vont ensuite se placer dans **les sites.**
- Le remplissage limite est alors atteint pour un type de structure ionique quand existent simultanément un contact mixte (anion cation) et un contact anionique limite (anion anion).


2. Exemple du NaCl (chlorure de sodium)

Doc. 17. Description de NaCl à partir de deux sous-réseaux d'ions Na⁺ et d'ions Cl⁻.

Doc. 15. Structure du chlorure de sodium NaCl (modèle éclaté).

2.1. Description à partir du contenu de la maille (doc.15)

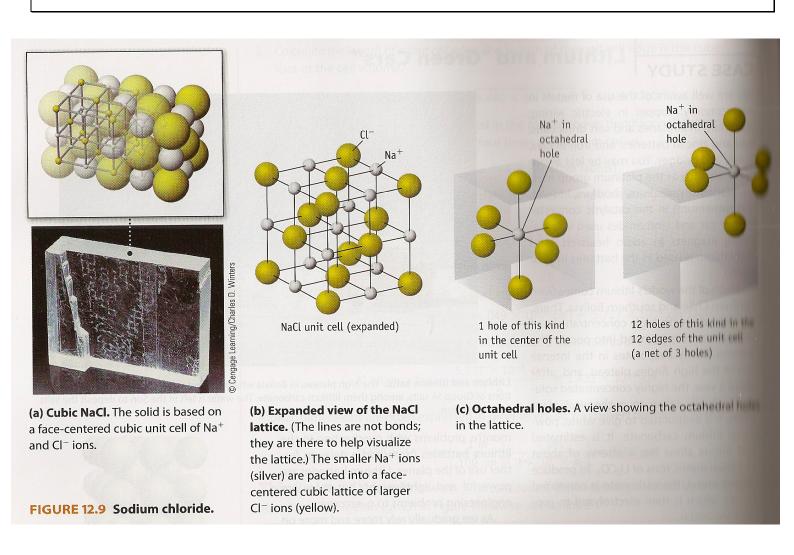
Le chlorure de sodium cristallise dans le système cubique avec 4 motifs NaCl par maille, N(NaCl) = 4

Les ions CI^- sont situés aux sommets de la maille et au centre des faces : $N(CI^-) = \left(8 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{2}\right) = 4 \text{ selon un réseau CFC.}$

Les ions Na^+ occupent le centre et les milieux des arêtes de la maille cubique : $N(Cs^+) = \left(1 \times 1\right) + \left(12 \times \frac{1}{4}\right) = 4.$

2.2. Description en terme de remplissage de sites d'une structure hôte (doc.16)

on a $r(Na^+) = 97$ pm et $R(Cl^-) = 181$ pm.

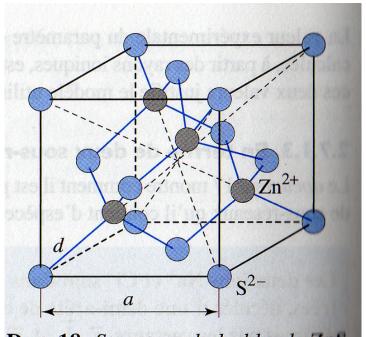

$$2R(Cl^{-}) < a\frac{\sqrt{2}}{2} \text{ et } r(Na^{+}) + R(Cl^{-}) = \frac{a}{2}$$

$$a(NaCl) = 564 \text{ pm (valeur expérimentale)}$$

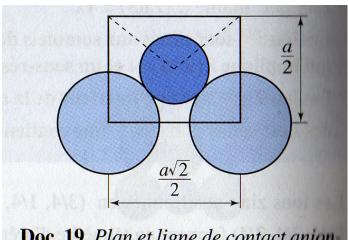
Il existe une forte analogie structurale entre les positions relatives des deux ions Na^+ et Cl^- . La coordinance vaut 6 avec pour polyèdre de coordination un octaèdre (doc.15).

2.3. Description en terme de deux sous-réseaux décalés (doc.17)

Les deux ions Na^+ et Cl^- sont dans des **assemblages cubiques à faces centrées (CFC)**, **décalés** d'une demi arête de cube selon trois directions équivalentes définies par les vecteurs diagonaux du cube \vec{a} , \vec{b} et \vec{c} .


2.4. Compacité et masse volumique

$$C(NaCI) = \frac{4 \times \left(\frac{4\pi}{3} R^3 + \frac{4\pi}{3} r^3\right)}{a^3}$$
 $C(NaCI) = 0.667$


$$\rho(NaCI) = \frac{N M}{N_a V_{maille}} = \frac{4 \times (22,99 + 35,45).10^{-3}}{6,023.10^{23} \times (564.10^{-12})^3}$$

 $\rho(NaCl) = 2,16.10^3 \text{ kg.m}^{-3}$

3. Exemple du ZnS (sulfure de zinc ou blende)

Doc. 18. Structure de la blende ZnS (modèle éclaté).

Doc. 19. Plan et ligne de contact anion cation.

3.1. Description à partir du contenu de la maille (doc.18)

Le sulfure de zinc cristallise dans le système cubique avec 4 motifs ZnS par maille : N(ZnS) = 4. Les ions S^{2-} sont situés aux sommets de la maille et au centre des faces : $N(Sn^{2-}) = \left(8 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{2}\right) = 4$ selon un réseau CFC.

3.2. Description en terme de remplissage de sites d'une structure hôte (doc.19)

on a $r(Zn^{2+}) = 74$ pm et $R(S^{2-}) = 184$ pm

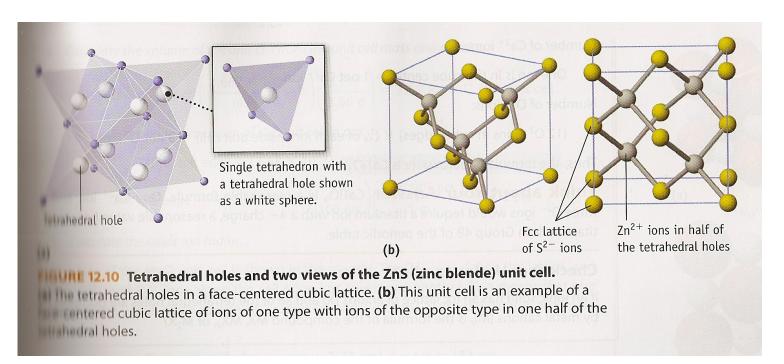
$$2R(S^{2-}) < a\frac{\sqrt{2}}{2} \text{ et } r(Zn^{2+}) + R(S^{2-}) = a\frac{\sqrt{3}}{4}$$

$$a(ZnS) = 541 \text{ pm (valeur expérimentale)}$$

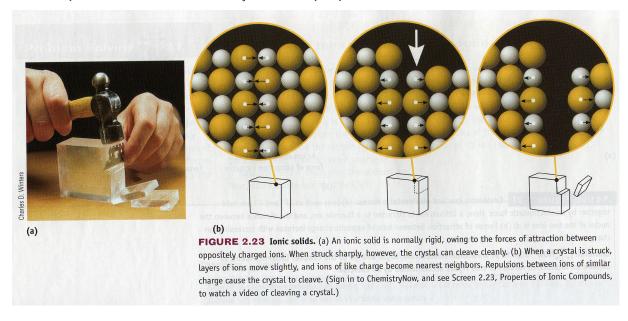
Il existe une forte analogie structurale entre les positions relatives des deux ions Zn^{2+} et S^{2-} . La coordinance vaut 4 avec pour polyèdre de coordination un tétraèdre (doc.18).

3.3. Description en terme de deux sous-réseaux décalés (doc.18)

Il est possible de décrire la structure de la blende à partir de deux sous-réseaux cubiques à faces centrées (CFC) d'ions zinc et sulfure décalés d'un quart de diagonale de cube.


3.4. Compacité et masse volumique

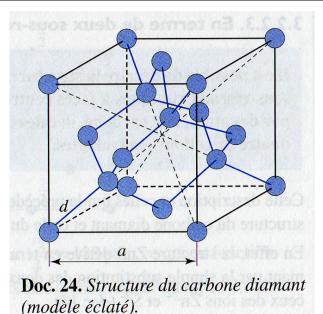
$$C(ZnS) = \frac{4 \times \left(\frac{4\pi}{3}R^3 + \frac{4\pi}{3}r^3\right)}{a^3}$$

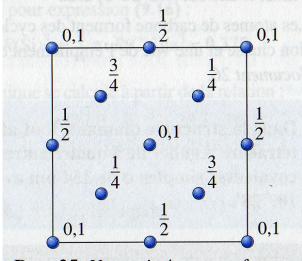

$$C(ZnS) = 0.702$$

$$\rho(ZnS) = \frac{N M}{N_a V_{maille}} = \frac{4 \times (65,37 + 32,06).10^{-3}}{6,023.10^{23} \times (541.10^{-12})^3}$$

$$\rho(ZnS) = 4,10.10^3 \text{ kg.m}^{-3}$$

Pour terminer cette partie sur les édifices ioniques, regardons la figure ci-dessous. Elle explique pourquoi les cristaux ioniques sont faciles à cliver. Il suffit de mettre en contact des ions de même charge (grâce à une petite frappe avec un marteau adapté) pour que la répulsion électrostatique entre ces ions finisse par cliver le cristal de façon très « propre ».




III - EDIFICES COVALENTS

1. DEFINITIONS

Ce sont des édifices cristallins dont la charpente est constituée par des enchaînements covalents d'atomes. Ces enchaînements, étendus indéfiniment à l'échelle atomique, constituent des molécules géantes ou macromolécules. Les enchaînements covalents peuvent être tridimensionnels, bidimensionnels ou unidimensionnels.

2. EDIFICE COVALENT TRIDIMENSIONNEL: EXEMPLE DU DIAMANT

Doc. 25. Vue projetée sur une face. La cote est reportée en valeur relative.

Il ne fait intervenir que des liaisons covalentes entre les atomes. L'enchaînement covalent se développe selon les trois dimensions de l'espace et forme une macromolécule tridimensionnelle.

2.1. Description à partir du contenu de la maille

On a une structure CFC d'atomes de carbone, avec occupation d'un site tétraédrique sur deux par un atome de carbone. Chaque atome de carbone a un environnement tetraédrique de 4 carbones : $d_{c-c} = 154 \text{ pm et } \widehat{\text{CCC}} = 109^{\circ}28'$.

$$N(C) = \left(8 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{2}\right) + \left(4 \times 1\right) = 8$$
 atome par maille.

Si l'on considère un huitième de la maille on a :

$$d_{C-C} = 2r_{C_{diamant}} = a(C_{diamant}) \frac{\sqrt{3}}{4}$$

$$a(C_{diamant}) = 356,679 \text{ pm (valeur expérimentale)}$$

La coordinence vaut 4, chaque atome de carbone a un environnement tétraédrique.

2.2. Description en terme de deux sous-réseaux décalés (doc.18)

Il est possible de décrire la structure du carbone diamant à partir de deux sous-réseaux cubique à faces centrées (CFC) dont tous les nœuds sont occupés par des atomes de carbone, décalés d'un quart de diagonale de cube selon quatre directions équivalentes.

On voit la **profonde analogie entre la structure du diamant et celle de la blende**. La structure ZnS dérive en terme de filiation structurale de celle du diamant par la simple substitution des deux sous-réseaux des atomes de carbone par ceux des ions Zn^{2+} et S^{2-} .

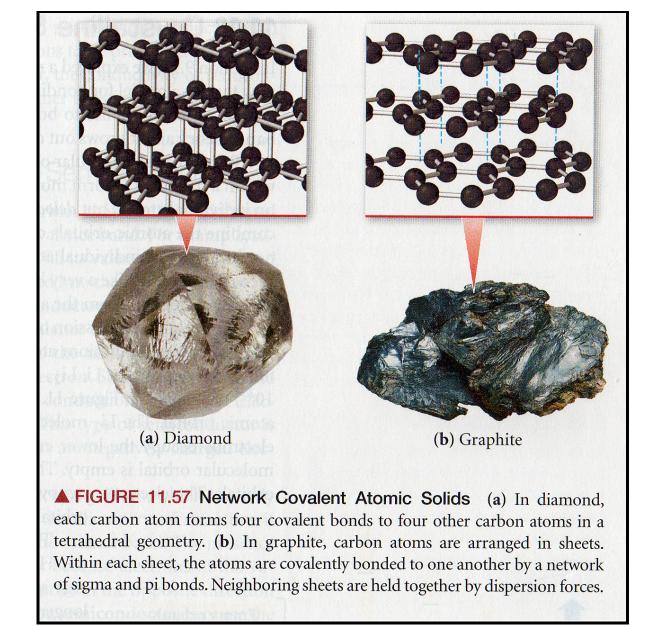
4.4. Compacité et masse volumique

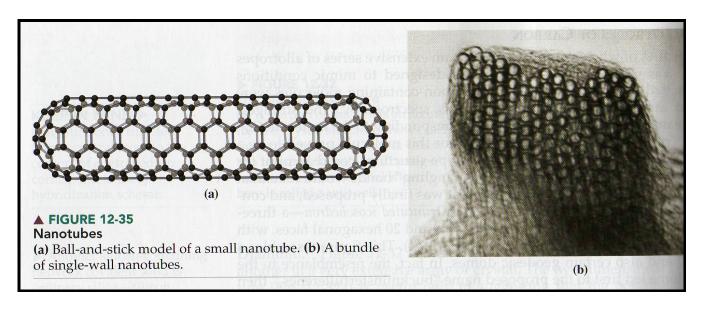
$$C = \frac{8 \times \left(\frac{4\pi}{3}r^3\right)}{a^3}$$
 $\boxed{C(\text{diamant}) = 0.34}$

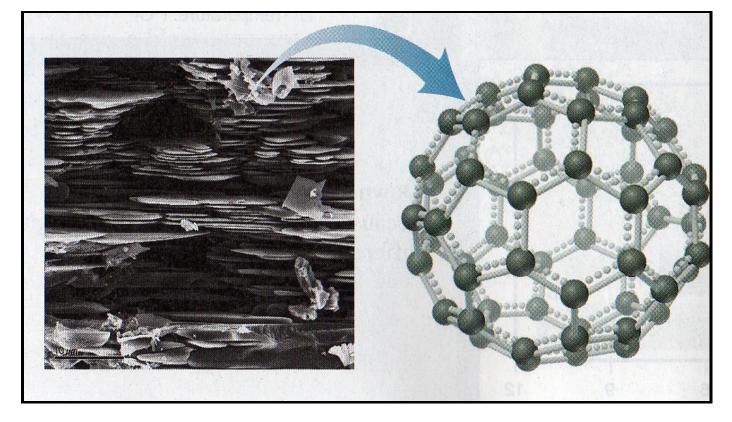
$$\rho = \frac{N M}{N_a V_{maille}} = \frac{8 \times 12,0.10^{-3}}{6,023.10^{23} \times \left(357.10^{-12}\right)^3}$$

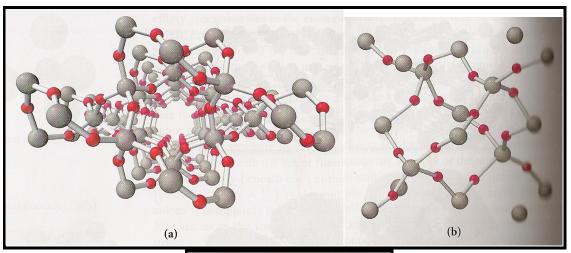
$$\rho(\text{diamant}) = 3,51.10^3 \text{ kg.m}^{-3}$$

Le diamant est le composé de plus haute dureté en corrélation avec la nature covalente des liaisons de cohésion cristalline à 3D et non avec une compacité qui est faible au regard de celle des métaux et des composés ioniques.

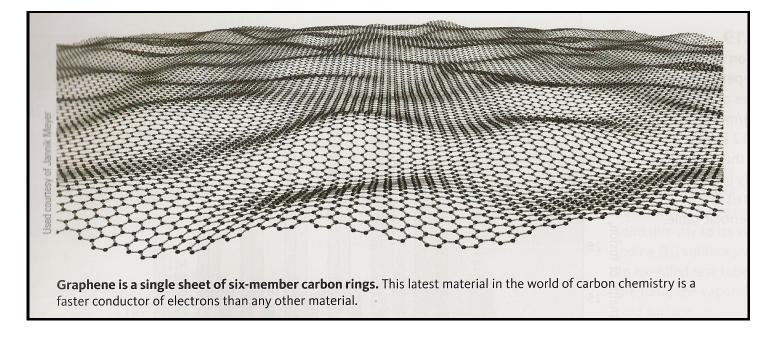

3. EDIFICE COVALENT BI ET UNI-DIMENSIONNEL; CRISTAL COVALENT-MOLECULAIRE


Il existe deux types d'édifices :

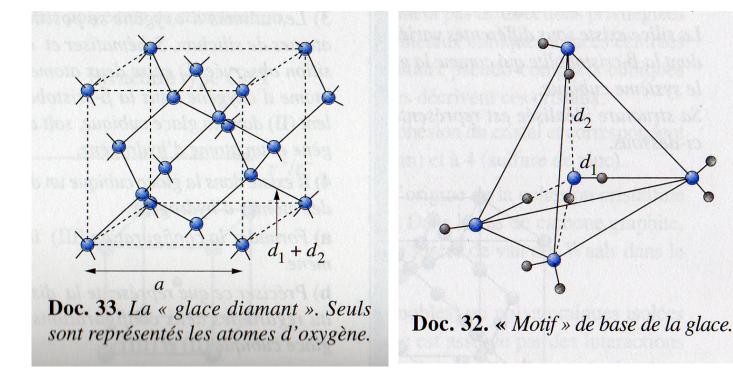

- Les **édifices en couches** constitués d'un empilement de macromolécules planes comme le carbone graphite.
- Les **édifices en lignes** constitués de macromolécules linéaires comme le polyéthylène haute densité PEHD.


La cohésion entre les macromolécules constituant les édifices en couches et en lignes est assurée par des liaisons intermoléculaires (liaison de Van Der Waals, éventuellement liaisons hydrogène) beaucoup plus faibles que les liaisons covalentes.

Les figures ci-dessous montrent différentes les différentes variétés allotropiques du carbone solide : Le carbone diamant, le carbone graphite, les nanotubes de carbone et le carbone sous forme de fullerène (appelé communément ballon de foot)



▲ FIGURE 11.58 The Structure of Quartz (a) Quartz consists of an array of SiO₄ tetrahedra with shared oxygen atoms. (b) Glass is amorphous SiO₂.



IV - EDIFICES MOLECULAIRES

1. DEFINITIONS

Le motif des cristaux moléculaires est constitué par des molécules mono ou polyatomiques. Dans les cristaux moléculaires, les molécules sont liées par des interactions de faible énergie (interaction de Van der Waals ou liaison hydrogène). Les gaz nobles, de dioxygène, le dioxyde de carbone et le diiode doivent leur cohésion, à l'état solide, à des interactions de Van der Waals. Dans la glace, des liaisons hydrogènes se superposent aux interactions de Van der Waals.

2. EXEMPLE DE LA GLACE DE TYPE « DIAMANT »

La glace présente en fonction de la température et de la pression un polymorphisme remarquable. Pas moins de treize variétés cristallines et de trois formes amorphes sont connues à l'heure actuelle. Dans toutes ces espèces, un **même motif** se développe en un réseau 3D ordonné ou pas. Ce motif de base (voir figure) résulte de l'association d'une molécule H_3O avec quatre autres molécules.

Un atome d'oxygène est au centre d'un tétraèdre dont les quatre sommets sont aussi occupés par des atomes d'oxygène; ce qui implique l'existence de deux distances oxygène-hydrogène différentes : d_1 et d_2 .

A très faible pression et dans l'intervalle de température 148-188 K, il existe une variété de **glace cubique** .

Le paramètre de maille cubique *a* est égal à 635 pm et les positions occupées par les atomes d'oxygène correspondent à celles des atomes de carbone de la structure de diamant : on parle de « glace diamant ».

Il y a deux distances oxygène-hydrogène :

- $d_1 = 98 \,\mathrm{pm}$, liaison covalente O H déjà observée pour la molécule d'eau gazeuse.
- $d_2 = 177$ pm, liaison hydrogène.

La distance entre deux atomes d'oxygène les plus voisins représente un quart de la diagonale de la maille cubique, soit :

$$d(O-O) = \frac{a\sqrt{3}}{4} = 275 \text{ pm} = d_1 + d_2.$$

 $N(H_30) = 8$ (comme pour le diamant).

$$\rho = \frac{N M}{N_a V_{maille}} = \frac{4 \times 18.10^{-3}}{6,023.10^{23} (635.10^{-12})^3} \qquad \boxed{\rho(H_2 O) = 931 \text{ kg.m}^{-3}}$$

V - BILAN: STRUCTURE ET PROPRIETES DES SOLIDES SOLIDE

Le tableau suivant récapitule les différents types de solides que nous avons rencontrés ainsi que leurs principales caractéristiques.

TABLEAU 8.7	Les structures des différents types de solides	nts types de solides		
Types	Composants	Exemples	Forces mises en jeu	Propriétés caractéristiques
Métallique	Atomes de métal (ions métalliques positifs et électrons délocalisés)	Fer, argent, cuivre, les alliages métalliques	Liaison métallique; attraction électrostatique entre les cations métalliques et les électrons	Malléables, ductiles, bons conducteurs électriques [(s) et (l)], bons conducteurs de la chaleur, vaste gamme de dureté et de points de fusion
Ionique	Cations et anions, pas de molécules individuelles	NaCl, K ₂ SO ₄ , CaCl ₂ , (NH ₄) ₃ PO ₄	Liaison ionique; attraction électrostatique entre les cations et les anions	Durs, cassants, points de fusion élevés, mauvais conducteurs électriques (s), bons conducteurs électriques (l), souvent solubles dans l'eau
Moléculaire	Molécules	H ₂ (s), O ₂ (s), I ₂ , glace, neige carbonique CO ₂ (s), CH ₄ (s), CH ₃ OH (s), CH ₃ CH ₂ OH (s), la plupart des composés organiques solides	Forces de Van der Waals, liaisons hydrogène parfois	Points de fusion et d'ébullition de bas à modérés, mauvais conducteurs électriques [(s) et (l)]
Covalent	Atomes liés par covalence dans un réseau bidimensionnel ou tridimensionnel	Graphite, diamant, quartz, feldspath, mica	Liaisons covalentes; liaisons directionnelles par doublet d'électrons	Vaste gamme de dureté et de points de fusion (3D > 2D), mauvais conducteurs électriques à quelques exceptions près
Amorphe	Réseau covalent sans répétition régulière de motifs	Verre, polyéthylène, nylon	Liaisons covalentes; liaisons directionnelles par doublets d'électrons	Vaste gamme de points de fusion, mauvais conducteurs électriques à quelques exceptions près