
Electrocinétique série n°4 bis : Régime sinusoïdal forcé

Exercice : Résonance pour un circuit RLC parallèle

On considère le circuit ci-dessous :

Le générateur de tension fournit un courant sinusoïdal de la forme $i(t) = I_m \cos(\omega t)$ connu.

- a) Déterminer l'amplitude U_m et la phase φ de la tension u(t) en fonction de C, R, L, I_m et ω . On pourra noter \underline{U} l'amplitude complexe associée à u(t), \underline{I} celle associée à i(t) et \underline{Z} l'impédance complexe du dipôle RLC parallèle.
- **b)** A partir du résultat précédent $\underline{U} = \underline{Z}\underline{I}$, retrouver directement l'équation différentielle temporelle qui gouverne u(t). En déduire les expressions de la pulsation propre ω_0 du circuit et le facteur de qualité Q du circuit.
- c) Réécrire l'amplitude U_m et la phase φ de la tension u(t) en fonction de $x \equiv \omega/\omega_0$ et Q.
- **d)** Pour quelle valeur de ω l'amplitude U_m est-elle maximale ? Tracer l'allure, en justifiant, des courbes $U_m(x)$ et $\varphi(x)$ pour Q_1 et Q_2 avec $Q_1>Q_2$.