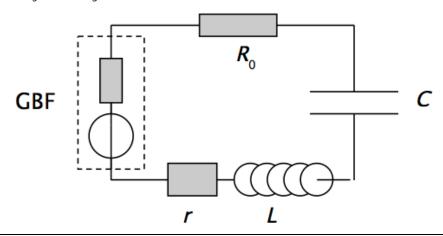

CIRCUIT D'ORDRE 2 EN REGIME TRANSITOIRE

OBJECTIFS

- √ Réaliser pour un circuit l'acquisition d'un transitoire du deuxième ordre et analyser ses caractéristiques.
- ✓ Confronter les résultats expérimentaux aux expressions calculées.


MATERIEL

- ✓ Oscilloscope, multimètre, GBF
- ✓ Résistance variable

- √ Bobine d'inductance variable
- √ Condensateur de capacité variable

1. REALISATION DU MONTAGNE, OBSERVATION A L'OSCILLOSCOPE

Soit un condensateur $C=10\,\mathrm{nF}$, une bobine $L=0.2\,\mathrm{H}$ et r_L à noter (ou à mesurer), une résistance R_0 variable de 0 à $R=10\,\mathrm{k}\Omega$, un générateur GBF de tension maximale 3 V. On notera $R=r_L+R_0+r_g$ avec r_g la résistance interne du GBF d'environ 50 Ω .

1) A Réaliser un montage (et faire le schéma) pour observer la tension aux bornes du condensateur et l'intensité du courant dans la résistance avec un oscilloscope analogique différentiel.

2)		les divers	régimes	et évaluer	la résistance	critique	R_c . On	sélectionner	a
en sortie du GBF une tension rectangulaire, pourquoi ?									

Comparer la valeur expérimentale de R_c avec la valeur calculée $2\sqrt{\frac{L}{C}}$. Conclusion.

2. ACQUISITION SUR ORDINATEUR PAR GTS II + ORPHI

On utilise l'interface d'acquisition ORPHI couplée au logiciel GTS II pour enregistrer la tension $u_c(t)$ aux bornes du condensateur. On se placera en régime pseudo-périodique. Il faut toujours aussi visualiser les tensions avec l'oscilloscope (écran de contrôle), ne pas le débrancher.

- 1) Faire en sorte d'acquérir une seule série d'oscillations amorties de la tension u_c aux bornes du condensateur. Enregistrer cette courbe et l'exporter dans REGRESSI.
- 2) Modéliser la courbe avec REGRESSI. Relever les valeurs de β et de T proposées par le logiciel et comparer ces valeurs aux valeurs calculées. En déduire le facteur de qualité Q du circuit.

3) A l'oscilloscope puis avec Orphi-GTSII, acquérir le portrait de phase (u_c, u_c) . Analyser.

3. ASPECTS ENERGETIQUES

1) Avec ORPHI, enregistrer la tension aux bornes du condensateur u_c et la tension aux bornes de la résistance u_{R_0} . Faire encore en sorte d'acquérir une seule série d'oscillations amorties. Exporter dans REGRESSI.

2) \triangle A partir des mesures de $u_c(t)$ et de $u_{R_0}(t)$, créer dans REGRESSI les nouvelles variables :

- \rightarrow *i* : l'intensité dans le circuit
- $\rightarrow u_L$: la tension aux bornes de l'inductance
- ightarrow $P_{R_{tot}}$: la puissance dissipée par la résistance totale du circuit
- $\rightarrow P_{L}$: la puissance dissipée ou fournie par l'inductance
- ightarrow P_c : la puissance dissipée ou fournie par le condensateur
- $\rightarrow P_{tot} = P_{R_{tot}} + P_C + P_L$

Tracer en fonction du temps les trois puissances et leur somme.

3) Analyser GBF et comparer	et discuter ces courbes à la valeur calculée.	. En déduire la	a valeur de la puissar	nce fournie par le
				MAIS NON! JE N'AI JAMAIS DIT DE BRANCHER TES CAMARADES EN DÉRIVATION!