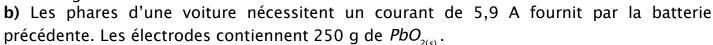
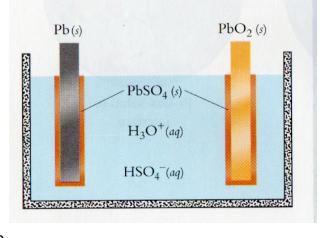

Solution aqueuse série n°4: Oxydoréduction


Exercice 1 : Batterie de voiture •

Le courant électrique nécessaire pour démarrer le moteur d'une voiture est fourni par une batterie au plomb représenté par le schéma ci-contre.


Cette batterie contient une solution d'acide sulfurique dans laquelle se trouvent deux électrodes, une au plomb et l'autre à l'oxyde de plomb. Chaque électrode produit le solide $PbSO_{4(s)}$

quand elle fonctionne;
$$Pb_{(s)} \rightarrow PbSO_{4(s)}$$
 et $PbO_{2(s)} \rightarrow PbSO_{4(s)}$.

On suppose que la batterie est capable de fournir le courant de 5,9 A jusqu'à ce que $PbO_{2(s)}$ soit entièrement consommé. Combien de temps peut-on laisser les phares allumés après l'arrêt du moteur?

Exercice 2 : Pile à combustible ◆◆

Dans cette pile, les électrodes sont en platine, les combustibles sont le méthanol (le réducteur) et l'eau oxygénée (oxydant), en solution aqueuse.

- a) Ecrire les demi-équations rédox, faire un schéma de la pile, expliquer son fonctionnement. Prévoir la masse de méthanol consommée pour un fonctionnement pendant 1 heure et un débit de 1 ampère.
- b) Ecrire les potentiels de Nernst.
- c) Ecrire la réaction bilan de la pile en milieu basique et calculer sa constante d'équilibre. Couples envisageables :

$$CO_3^{2^-}$$
 / CH_3OH $E_1^0 = 0.18 \text{ V}$
 H_2O_2 / H_2O $E_2^0 = 1.78 \text{ V}$
 $O_{2(aq)}$ / H_2O_2 $E_3^0 = 0.68 \text{ V}$

Masses molaires (g.mol⁻¹): $M_H = 1$, $M_C = 12$, $M_O = 16$

Constante de Faraday : F=96500 C

Exercice 3: Prévision d'une réaction ◆◆

On mélange à volumes égaux quatre solutions :

nitrate d'étain (II) à $0,01 \text{ mol.L}^{-1}$, nitrate d'étain (IV) à $0,01 \text{ mol.L}^{-1}$

nitrate de fer (II) à 0,03 mol.L⁻¹, nitrate de fer (III) à 0,03 mol.L⁻¹

La solution est assez acide pour qu'il n'y ait pas de précipité d'hydroxyde.

a) On se place à l'état initial. Comparer les potentiels rédox des 2 couples. Conclusion.

Calculer le quotient réactionnel et le comparer à la constante de l'équilibre.

b) Calculer les concentrations à l'équilibre. En déduire le potentiel rédox de la solution à l'équilibre.

Données :

$$\overline{E^0(Sn^{4+}/Sn^{2+})} = 0.15 \text{ V}, \ E^0(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V à 25°C}$$