Chimie en solution aqueuse, mécanique du point

Problème: Oscillations (extrait du CAPES 2005)

B.I Quelques généralités

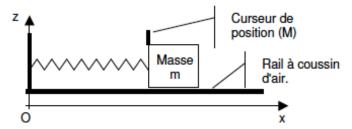
B.I.1. Définissez successivement les termes : référentiel, repère, base de projection.

B.I.2. Qu'est-ce qu'un référentiel galiléen ?

B.I.3.a Qu'appelle-t-on référentiel terrestre local ? Est-il galiléen ?

B.I.3.b. Pourquoi l'accélération de la pesanteur \vec{g} varie t-elle au niveau du sol entre les pôles et l'équateur ? Où est-elle la plus grande ?

B.I.4. Qu'appelle-t-on un oscillateur ? Donner quelques exemples.


B.I.5. Proposer un protocole expérimental permettant de mesurer la constante de raideur d'un ressort.

On réalise expérimentalement le dispositif suivant : un objet de masse m est attaché à un ressort de constante de raideur k et de longueur à vide L_0 et posé sur un rail horizontal.

Un dispositif expérimental permet de relever la position M de l'objet en fonction du temps.

On notera $\overrightarrow{OM} = x.\overrightarrow{u}_x$ et on notera X la position de l'objet par rapport à sa position d'équilibre.

On se placera dans le référentiel terrestre local supposé galiléen.

Données numériques: $k = 10 \text{ N.m}^{-1}$; m = 100 g; $g = 9.81 \text{ m.s}^{-2}$

B.II Oscillations idéales (sans frottements)

La masse m est posée sur un rail à coussin d'air horizontal (en fonctionnement). On supposera donc qu'il n'y a pas de pertes par frottements entre le rail et l'objet.

B.II.1. Étude expérimentale.

À l'aide du dispositif expérimental et d'un tableur, un enseignant trace la courbe en annexe : Oscillations 1

B.II.1.a. De quel type de mouvement s'agit-il?

B.II.1.b. Quelles ont été les conditions initiales ?

B.II.1.c. Déterminer la période du mouvement.

B.II.2. Étude théorique.

On suppose que l'objet a été écarté de sa position d'équilibre d'une distance Xo et lâché sans vitesse initiale.

B.II.2.a. Étude dynamique.

B.II.2.a.1. Faire un bilan des forces et en déduire l'équation différentielle dont X(t) est solution.

B.II.2.a.2. Calculer X(t). On notera ω_0 la pulsation propre de ce système.

B.II.2.a.3. Calculer la période d'oscillation T et comparer à la valeur expérimentale du B.II.1.c

B.II.2.b. Étude énergétique.

B.II.2.b.1. Définir l'énergie potentielle associée à une force F. On précisera les conditions d'existence de cette grandeur.

B.II.2.b.2. Quelle serait l'énergie potentielle associée à une force $F_r = -k(x - L_0)\mathfrak{Q}_x$? On précisera le choix de l'origine pour cette énergie.

B.II.2.b.3. Énoncer le théorème de l'énergie mécanique.

B.II.2.b.4. Retrouver l'équation différentielle du mouvement en utilisant le théorème de l'énergie mécanique.

B.II.3 Premier élève

Au cours de la séance de T.P un élève recueille la courbe en annexe : Oscillations 2 . Expliquer ce qu'a fait l'élève.

B.III Deuxième élève ; oscillations amorties

L'objet de masse m est toujours posé sur un rail à coussin d'air horizontal.

Un des élèves s'est amusé à mettre une "voile" sur l'objet. Il apporte alors à son professeur la courbe X(t) en annexe: Oscillations 3

B.III.1. Etude expérimentale.

B.III.1.a. De quel type de mouvement s'agit-il?

B.III.1.b. Quelles ont été les conditions initiales ?

B.III.1.c. Ce mouvement est-il périodique ? Donner l'équation de l'enveloppe : courbe qui rejoint les maxima.

B.III.1.d. À l'aide du graphique et des données numériques du B.I., évaluer l'énergie qui a été dissipée au cours de la première oscillation.

B.III.2. Étude théorique.

On suppose que l'objet a été écarté de sa position d'équilibre d'une distance X₀ et lâché sans vitesse initiale.

On modélise la force due à la "voile" par une force de frottement "fluide" : $\vec{F}_{flu} = -a\vec{v}$, avec \vec{v} vecteur vitesse ($\vec{v} = \dot{x}.\vec{u}_{\star}$).

B.III.2.a. Étude dynamique.

B.III.2.a.1. Faire un bilan des forces et en déduire l'équation différentielle dont X(t) est solution.

On mettra cette équation sous la forme : $\ddot{X}+2\xi\omega_0\dot{X}+\omega_0^2X=0$; ξ et ω_0 sont des constantes à déterminer en fonction de a, k et m.

B.III.2.a.2. Montrer que $X(t) = X_0.e^{-\xi\omega_0t}.\cos(\Omega t)$ dans le cas où $\xi < 1$, avec Ω à déterminer en fonction de a. k et m.

B.III.2.a.3. Comment appelle-t-on Ω ? Que deviendrait le mouvement si $\xi > 1$?

B.III.2.a.4. À l'aide du graphique et des données numériques du **B.I**, calculer ξ et en déduire la valeur du coefficient de frottement a.

B.III.2.b. Etude énergétique.

On veut évaluer le travail de la force $\vec{F}_{flu} = -a\vec{v}$ pour en déduire la valeur du coefficient de frottement a.

On suppose que pendant la première pseudo-période T: $X(t) \approx X_0.\cos(\omega_0 t)$.

B.III.2.b.1. Exprimer la puissance instantanée reçue par l'objet de la part de É_{fin}.

B.III.2.b.2. Que vaut alors son travail entre t = 0 et t = T?

B.III.2.b.3. En utilisant la valeur de l'énergie dissipée trouvée au B.III.1.d, retrouver la valeur de a. La comparer à celle trouvée au B.III.2.a.4.

B.IV Troisième élève

La masse m est toujours posée sur un rail à coussin d'air horizontal.

Un des élèves apporte alors la courbe X(t) en annexe : oscillations 4.

Devant l'air étonné du professeur, il avoue qu'il n'a pas mis la soufflerie en marche.

B.IV.1. Etude expérimentale.

B.IV.1.a. De quel type de mouvement s'agit-il, et quelles ont été les conditions initiales ?

B.IV.1.b. La dissipation d'énergie est-elle due à une force de frottement "fluide" ?

B.IV.1.c. A l'aide du graphique et des données numériques du **B.I.**, évaluer l'énergie qui a été dissipée au cours de la première $\frac{1}{2}$ oscillation (de t = 0 à $t = t_1$ avec t_1 instant correspondant au premier minimum de X).

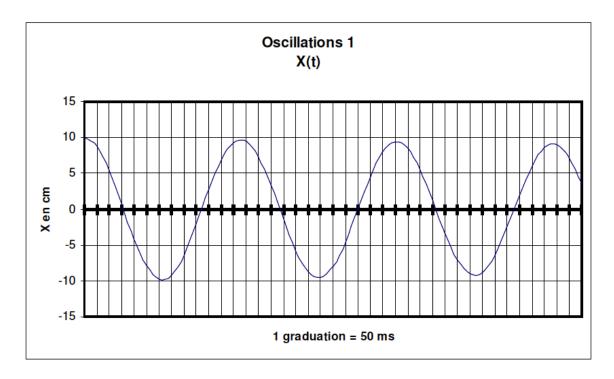
B.IV.2. Etude théorique.

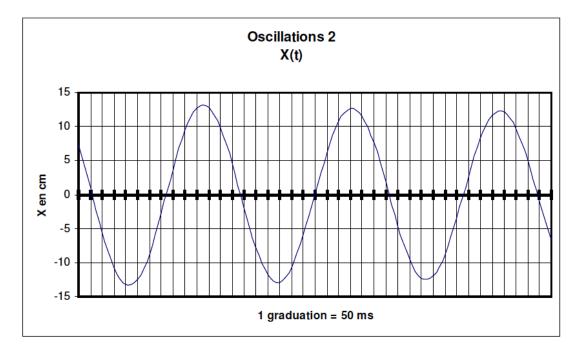
On suppose que l'objet a été écarté de sa position d'équilibre d'une distance X₀ et lâché sans vitesse initiale.

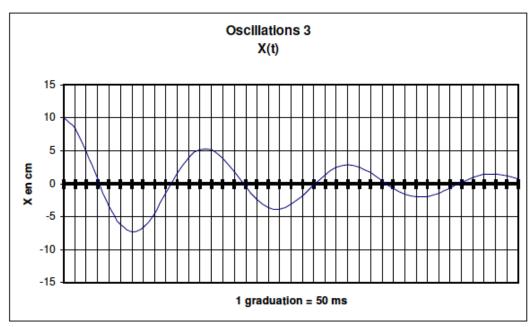
On note $\vec{R} = R_T . \vec{u}_x + R_N . \vec{u}_z$ la réaction du support, dont on suppose qu'elle vérifie les lois de Coulomb du frottement solide. On confondra les coefficients de frottement statique et dynamique, on notera alors f le coefficient de frottement.

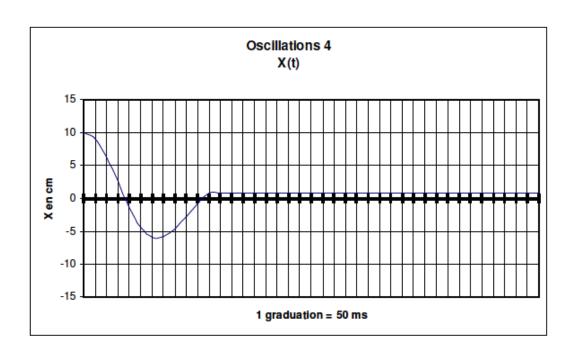
B.IV.2.a. Énoncer les lois de Coulomb du frottement solide.

B.IV.2.b. Lorsque le solide est arrêté, la position expérimentale du point M est donnée par $X(t\rightarrow\infty) = 0.8$ cm.


En déduire la valeur de la réaction tangentielle lorsque le solide est à l'arrêt.


B.IV.2.c. Représenter les forces qui s'exercent sur l'objet pendant le mouvement de t à t₁.


B.IV.2.d. Calculer littéralement le travail de la réaction \vec{R} en fonction de X(0) et $X(t_1)$


B.IV.2.e. En utilisant la valeur de l'énergie dissipée trouvée au B.IV.1.c, trouver la valeur de f.

Annexe Oscillations mécaniques: Courbes expérimentales.

Exercice: Le carbone dans les océans

Le dioxyde de carbone $CO_{2(g)}$ présent dans l'atmosphère (et dont la concentration ne cesse de croître à cause de l'activité humaine, en particulier sa consommation d'énergie fossile) se dissout dans les océans pour former l'acide carbonique selon l'équilibre :

$$CO_{2(g)} + H_2O_{(\ell)} \rightleftharpoons H_2CO_{3(aq)}$$

L'océan et l'atmosphère étant en équilibre, la concentration de l'acide carbonique reste égale à $10^{-4,9}$ mol.L⁻¹. De plus, à la surface des océans, pH = 8,1.

- a) Calculer les concentrations des diverses espèces carbonées à la surface des océans : H_2CO_3 , HCO_3^- , CO_3^{2-} .
- **b)** Quelle est l'espèce majoritaire? Cela est-il compatible avec le diagramme de prédominance des espèces carbonées?

Données:

$$pK_{A1} = 6,4 \ \left(H_2CO_3 \ / \ HCO_3^-\right) \ \text{et} \ pK_{A2} = 10,3 \ \left(HCO_3^- \ / \ CO_3^{2-}\right)$$

Exercice: Le carbone dans les océans

Le dioxyde de carbone $CO_{2(g)}$ présent dans l'atmosphère (et dont la concentration ne cesse de croître à cause de l'activité humaine, en particulier sa consommation d'énergie fossile) se dissout dans les océans pour former l'acide carbonique selon l'équilibre :

$$CO_{2(g)} + H_2O_{(\ell)} \rightleftharpoons H_2CO_{3(aq)}$$

L'océan et l'atmosphère étant en équilibre, la concentration de l'acide carbonique reste égale à $10^{-4.9}$ mol.L⁻¹. De plus, à la surface des océans, pH = 8.1.

- a) Calculer les concentrations des diverses espèces carbonées à la surface des océans : H_2CO_3 , HCO_3^- , CO_3^{2-} .
- **b)** Quelle est l'espèce majoritaire? Cela est-il compatible avec le diagramme de prédominance des espèces carbonées?

Données:

$$pK_{A1} = 6.4 \ (H_2CO_3 / HCO_3^-) \ \text{et} \ pK_{A2} = 10.3 \ (HCO_3^- / CO_3^{2-})$$

Exercice: Le carbone dans les océans

Le dioxyde de carbone $CO_{2(g)}$ présent dans l'atmosphère (et dont la concentration ne cesse de croître à cause de l'activité humaine, en particulier sa consommation d'énergie fossile) se dissout dans les océans pour former l'acide carbonique selon l'équilibre :

$$CO_{2(g)} + H_2O_{(\ell)} \rightleftharpoons H_2CO_{3(aq)}$$

L'océan et l'atmosphère étant en équilibre, la concentration de l'acide carbonique reste égale à $10^{-4.9}$ mol.L⁻¹. De plus, à la surface des océans, pH = 8.1.

- a) Calculer les concentrations des diverses espèces carbonées à la surface des océans : H_2CO_3 , HCO_3^- , CO_3^{2-} .
- **b)** Quelle est l'espèce majoritaire? Cela est-il compatible avec le diagramme de prédominance des espèces carbonées?

Données:

$$pK_{A1} = 6,4 \ \left(H_2CO_3 \ / \ HCO_3^-\right) \ \text{et} \ pK_{A2} = 10,3 \ \left(HCO_3^- \ / \ CO_3^{2-}\right)$$