Fiches d'exercices Lycée F.BUISSON PTSI

Mécanique série n°7: Force centrale conservative

Dans ce TD, la Terre est assimilée à une sphère de rayon $r_0 = 6400 \, \mathrm{km}$ et est animée d'un mouvement de rotation uniforme de période $T_1 = 24 \, \mathrm{h}$ dans le référentiel géocentrique considéré comme galiléen. A la surface de la Terre, $g_0 = 9.8 \, \mathrm{m.s^{-2}}$.

Il y a des liens entre les exercices. Il faut penser à utiliser la conservation de l'énergie mécanique. On admet que l'énergie mécanique d'un satellite sur une orbite elliptique est identique à celle d'un satellite en orbite circulaire moyennant la substitution : rayon $\leftrightarrow 1/2$ grande axe de l'ellipse.

Exercice 1 : Satellite de masse m en orbite circulaire dans le plan équatorial à faible altitude, orbite base \spadesuit

L'altitude du satellite est négligeable devant r_0 .

- a) Exprimer en fonction de g_0 et r_0 la vitesse v_0 et la période T_0 du satellite. Faire l'application numérique.
- **b)** Calculer la vitesse v_{ϵ} d'un point de la terre à l'équateur.

Exprimer le rapport $v_{_{\rm S}}$ / $v_{_{\rm 0}}$ en fonction de $g_{_{\rm 0}}$, $r_{_{\rm 0}}$ et $T_{_{\rm 1}}$. Discuter.

c) Exprimer l'énergie W_0 à communiquer au satellite pour qu'il puisse atteindre cette orbite depuis une base de lancement située sur terre en fonction de son énergie cinétique E_{c0} sur l'orbite.

Exercice 2 : Satellite géostationnaire ◆◆

Un satellite géostationnaire reste toujours au dessus d'un même point situé sur terre.

a) Etablir les caractéristiques de sa trajectoire.

Exprimer le rayon r_1 de l'orbite en fonction de r_0 , T_1 et T_0 puis le rapport $d = r_1 / r_0$.

- **b)** Exprimer en fonction de v_0 et d la vitesse v_1 du satellite sur cette trajectoire.
- c) Exprimer le travail W à fournir pour lancer le satellite depuis la terre en fonction de E_{c0} et d.

Exercice 3 : Mise en orbite ◆◆◆

En un point de l'orbite basse, on communique très rapidement une nouvelle vitesse $\boldsymbol{v_0}$ ' afin que le satellite puisse, par l'intermédiaire d'une trajectoire elliptique de transfert, arriver tangentiellement à l'orbite géostationnaire.

- a) Exprimer la vitesse $v_{_0}$ ' en fonction de $v_{_0}$ et d. Faire l'application numérique.
- **b)** Exprimer le travail W_1 lié à cette étape en fonction de E_{c0} et d.
- c) Quelle est, en fonction de v_0 et d, la vitesse v_1 ' du satellite lorsqu'il arrive tangentiellement à l'orbite géostationnaire?
- **d)** Au point où le satellite arrive tangentiellement à l'orbite géostationnaire, on lui communique la vitesse v_1 . Exprimer le travail W_2 dépensé dans cette opération en fonction de E_{c0} et d.
- **e)** Calculer le travail total W' nécessaire à la mise en orbite géostationnaire du satellite. Valeur du rapport W'/E_{c0} . Discuter, comparer avec W.
- f) Calculer la durée T du transfert entre l'orbite basse et l'orbite finale en fonction de T_1 et d. Faire l'application numérique.