FILTRE DU 2^{EME} ORDRE

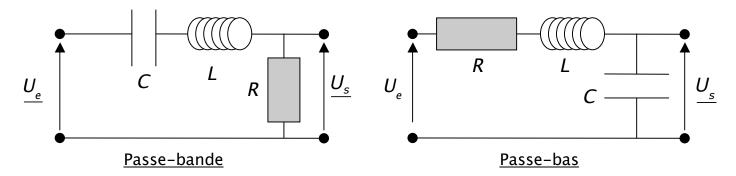
Le but de ce TP est de **tracer le gain en décibel** de la fonction de transfert des filtres du deuxième ordre RLC série, en fonction de la fréquence f (plus précisément de son log). Les valeurs efficaces sont lues au multimètre numérique.

Dans ce TP, on prendra les valeurs, indicatives, suivantes pour les composants :

 $C = 0.1 \,\mu\text{F}$, $R = 1 \,\text{k}\Omega$, $L = 0.2 \,\text{H}$ de résistance interne r à noter,

 $V_{eff}\sqrt{2}\approx 5$ volts (amplitude).

On notera : $u_e(t) = U_{eff}^e \sqrt{2} \cos(\omega t)$ et $u_s(t) = U_{eff}^s \sqrt{2} \cos(\omega t + \varphi)$.



I) Filtre passe bande

Calculer la fonction de transfert $\underline{H}(\omega) = \frac{\underline{U}_s}{\underline{U}_e}$. (Attention à ne pas oublier la résistance interne de la bobine).

Calculer numériquement la fréquence propre f_0 (qui est identique à la fréquence de résonance, cas de la résonance en intensité), le facteur de qualité Q et la bande passante Δf à - 3 dB.

Mesurer f_0 et la bande passante Δf à -3dB en s'assurant que $U_{eff}^e \sqrt{2} = \text{constante}$.

Relever environ 20 valeurs de f, U_{eff}^e , U_{eff}^s avec une décade de part et d'autre de f_0 environ. Introduire directement ces valeurs dans REGRESSI. Tracer ensuite $|\underline{H}| = U_{eff}^s / U_{eff}^e$ en fonction de $\log f$ ou $\log (f/f_0)$ puis $G_{dB} = 20 \log |\underline{H}|$ en fonction de $\log f$ ou $\log (f/f_0)$.

II) Filtre passe bas

鼨 Pourquoi modifie-t-on ainsi la place des dipôles ?

Calculer la fonction de transfert $\underline{H}(\omega) = \frac{U_s}{U_e}$.

Pour les valeurs de R=1 k Ω , 3 k Ω , 5 k Ω , calculer le facteur de qualité correspondant et relever pour chaque cas, environ 20 fois, f, U_{eff}^e , U_{eff}^s dans REGRESSI.

Tracer sur le même graphe l'ensemble des courbes $G_{dB} = 20\log |\underline{H}|$ en fonction de $\log f$ ou $\log (f/f_0)$ pour les valeurs de Q calculées précédemment puis U_{eff}^s toujours en fonction de $\log f$ ou $\log (f/f_0)$

Vérifier l'existence de la résonance en tension pour $Q > \frac{1}{\sqrt{2}}$.