Fiches d'exercices Lycée F.BUISSON PTSI

Thermodynamique série n°2: Le premier principe de la thermodynamique

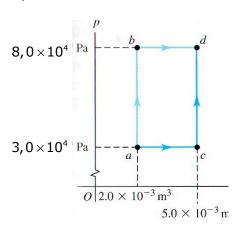
Exercice 1: Variation d'enthalpie de la vapeur d'eau ◆

La capacité thermique massique à pression constante de la vapeur d'eau à 150 kPa est donnée par la relation suivante :

$$C_{P,\text{mas}}(T) = 2.07 + \frac{T - 400}{1480} \text{ kJ.kg}^{-1}.^{\circ}\text{C}^{-1}$$

- a) Déterminer la variation d'enthalpie entre 300°C et 700°C de 3 kg de vapeur d'eau.
- **b)** Quelle est la valeur moyenne de $C_{P,mas}(T)$ entre 300°C et 700°C?

Exercice 2: Refroidissement d'une chambre à coucher


Une chambre à coucher typique contient 2500 moles d'air.

Déterminer le changement de l'énergie interne de l'air de la chambre lorsque cette dernière est refroidie de 23,9°C à 11,6°C à pression constante de 1,00 atm.

L'air est assimilé à un gaz parfait avec $\gamma = 1,40$.

Exercice 3: Comparaison de transformations thermodynamiques ••

Le diagramme PV ci-dessous montre une série de transformations thermodynamiques pour un système.

Dans la transformation ab, 150 J de chaleur est ajouté au système et dans la transformation bd, 600 J.

- **a)** Déterminer la variation d'énergie interne pour la transformation *ab*.
- **b)** Déterminer la variation d'énergie interne pour la transformation *abd*.
- c) Déterminer la quantité de chaleur reçue pour la transformation *acd*.
- **d)** Comparer la variation d'énergie interne, la chaleur échangée et le travail échangé pour les transformations *abd* et *acd*. Conclusion.

Exercice 4 : Cycle de transformation pour un gaz parfait ◆◆◆

Un kg de gaz parfait diatomique $(\gamma=1,4)$ subit le cycle de transformations suivant :

- i) état A : $P_0 = 1$ bar , $T_0 = 273$ K vers état B : T_1 , volume triple par un chauffage isobare.
- ii) état B vers état C : retour au volume initial mais à P_1 par une compression isotherme.
- iii) état C vers état A : refroidissement isochore.
- a) Avec le volume massique v, l'équation d'état s'écrit : Pv = rT. Préciser r.
- b) Représenter ce cycle dans le diagramme de Clapeyron Pv et exprimer, en fonction de r
- et T_0 , pour chaque étape, les variations d'énergie interne et d'enthalpie du gaz, ainsi que le travail et la chaleur échangés par le gaz.

Même calcul pour le cycle complet.

c) On envisage une nouvelle transformation $B \Rightarrow C$ représentée par un segment dans le diagramme Pv. Evaluer travail et chaleur échangés. Comparer avec la compression isotherme.

Exercice 5 : Loi de Laplace ◆◆◆◆

On considère un **gaz parfait** enfermé dans une enceinte **adiabatique** (les parois sont calorifugées) surmontée d'un piston aussi calorifugé.

A l'état initial, les n moles de ce gaz se trouvent à la température T_0 sous la pression P_0 .

Un opérateur agit très lentement sur le piston et amène le gaz dans un état final (T_1, P_1) . On peut donc considérer que la transformation est **quasi-statique** et qu'ainsi P et T sont définies à chaque instant dans le gaz et sont uniformes.

a) On suppose que les capacités thermiques molaires $C_{P,\text{mol}}$ et $C_{V,\text{mol}}$ sont indépendantes de la température. Montrer qu'il existe une relation f(T,P)= cste, T et P étant la température

et la pression du gaz à un instant quelconque de la transformation. On introduira $\gamma = \frac{C_p}{C_v}$ (réponse: $T^{\gamma}P^{1-\gamma} = \text{cste}$).

- **b)** Exprimer alors la relation liant T_0, P_0, T_1, P_1 et γ ; puis P_0, V_0, P_1, V_1 et γ enfin T_0, V_0, T_1, V_1 et γ .
- c) Exprimer, par un calcul direct, le travail échangé entre le gaz et le milieu extérieur. Retrouver ce résultat grâce à un bilan énergétique.

Remarque: La loi de Laplace sera très utilisée en particulier dans le cours de thermodynamique industrielle de PT.